Quantcast
Channel: Compumedics Neuroscan
Viewing all 55 articles
Browse latest View live

Grael 4K PSG/EEG Specifications Sheet


Magnetoencephaloghy (MEG) and CURRY – A long history together

$
0
0

The CURRY NeuroImaging platform and MEG have a history stretching back over 25 years. CURRY was first conceived as a product in the early 1990’s when Philips Electronics investigated the feasibility of developing it’s own MEG hardware platform. Ultimately, the hardware platform did not survive, but the software, along with its core engineering architects, Dr. Manfred Fuchs & Dr. Michael Wagner, continued on. When Philips exited the MEG business, CURRY and the development team were purchased by Neuroscan. At this time, the UNIX-based CURRY platform appealed more to the research community than to the clinical market. By 1999, publications were emerging describing the application of CURRY for cortical localization of EEG and MEG activity for tactile and auditory sensory input. However, “novel developments” and “new approaches to detailed localization of specific epileptic discharges” as well as identification of functionally critical areas of the brain controlling language and memory using CURRY, were also being reported in the clinical literature. Migration of CURRY from the UNIX to Windows platform in 2003 resulted in a rapid expansion of the use of CURRY in both the research and clinical worlds.

The benefits associated with CURRY’s ability to integrate MEG with EEG and co-register both kinds of high temporal resolution functional imaging data with the structural neuroimaging data including MRI, CT, DTI, as well as PET, SPECT and fMRI accelerated the the adoption of the software by both the research and clinical communities. Early clinical adopters, such as Dr. John Ebersole, supported and championed the benefits of source localization tools such as CURRY, contributing to the development of specific source analysis billing codes for EEG and MEG. For a long time, CURRY has been the de-facto software platform for clinical MEG community, particularly for those assessing epilepsy. This has culminated in the adoption of CURRY as the standard analysis platform by the European E-pilepsy Consortium.

For the CURRY team, integrating CURRY with the KRISS MEG hardware represents a full circle of development. With long-term future development plans for both hardware and software, CURRY MEG will offer an expanding list of benefits based on the first fully integrated platform combining EEG, MEG, multi-modal neuroimage co-registration and source reconstruction from a single provider – Compumedics Neuroscan.

The post Magnetoencephaloghy (MEG) and CURRY – A long history together appeared first on Compumedics Neuroscan.

Compumedics Neuroscan Neurodiagnostics

$
0
0

A Comprehensive Epilepsy Solution In a Single Seamless Platform. Compumedics and Neuroscan prod­ucts are emerg­ing as the stan­dard in facil­i­ties who require a single data acqui­si­tion and analy­sis system that can combine the best of clin­i­cal neurol­ogy and neuro­science, as well as the premiere hybrid of both disci­plines. We continue to strive toward advanced prod­ucts that offer no compro­mises, whether applied in the research labo­ra­tory or in clin­i­cal settings.

Neuvo LTM

neuvo

The Ulti­mate Long-term EEG Moni­tor­ing System.

From 64 to, now, 512 chan­nels of EEG, the Neuvo LTM system exceeds all your previ­ous expec­ta­tions. Born from and inte­grated with the Neuroscan Brain Research tech­nolo­gies, Neuvo provides that seamless transition for clinical neuroscience.

Profusion 4 EEG

profusion

Unlim­ited poten­tial in routine and LTM EEG.

An advanced user-friendly inter­face provides the user with reports, mapping, template match­ing and multi­ple high reso­lu­tion video windows. Open your clinical EEG files in Curry with a single click. Func­tions with all Compumedics EEG amplifiers.

Profusion Nexus

nexus

Complete labo­ra­tory manage­ment system of patient data and labo­ra­tory control for class lead­ing effi­ciency. Includes manage­ment of appoint­ments, wait­lists, process work­flow, disk space and labo­ra­tory resources.

Grael-HD EEG System

grael

High defi­n­i­tion EEG for the Clin­i­cal World.

Reli­able and flex­i­ble EEG stud­ies for the office, clinic or hospital. The Grael EEG system is ideal for clin­i­cal and LTM EEG.

 

[contact-form-7]

The post Compumedics Neuroscan Neurodiagnostics appeared first on Compumedics Neuroscan.

Publications by Neuroscan Staff

$
0
0

 

Ronnie Abi-Raad, Ph.D.

Huang J, Colrain IM, Melen­dres MC, Karamessi­nis LR, Pepe ME, Samuel JM, Abi-Raad RF, Trescher WH, Marcus CL. Corti­cal process­ing of respi­ra­tory affer­ent stim­uli during sleep in chil­dren with the obstruc­tive sleep apnea syndrome. Sleep. 2008;31(3):403–10.

Melen­dres MC, Marcus CL, Abi-Raad RF, Trescher WH, Lutz JM, Colrain IM. Respiratory-related evoked poten­tials during sleep in chil­dren. Sleep. 2008;31(1):55–61.

Abi-Raad R, Tan WKM, Bennet L, Gunn AJ, Davis SL, Gluck­man PD, John­ston BM and Williams CE Role of the Cere­brovas­cu­lar and Meta­bolic Responses in the Delayed Phases of Injury after Tran­sient Cere­bral Ischemia in Fetal Sheep. Stroke 1999. 30(12):2735–2741.

Höper J, Kessler M, Abi-Raad R, Funk R Oxygen-dependent Regu­la­tion of Capil­lary Flow. Fact or Fiction? Advances in Exper­i­men­tal Medi­cine & Biol­ogy 1997. 428:415–24.

Harri­son DK, Abi-Raad R, Newton DJ, McCol­lum PT Tran­scu­ta­neous H2 Clear­ance — A New Least-invasive Method for Assess­ing Skin Blood Flow. Advances in Exper­i­men­tal Medi­cine & Biol­ogy 1994. 361:181–6.

Harri­son DK, Abi-Raad R, Newton DJ and McCol­lum PT Tran­scu­ta­neous Hydro­gen Clear­ance — A New Non-invasive Tech­nique for Assess­ing Blood Flow in Human Skin. Phys­iol Meas 1994 15(1): 89–100.

 

Martin R Ford, Ph.D.

Fuchs M, Ford MR, Sands S, Lew HL. Overview of dipole source local­iza­tion. Phys Med Reha­bil Clin N Am. 2004 Feb;15(1):251–62.

Ford MR, Sands S, Lew HL. Overview of arti­fact reduc­tion and removal in evoked poten­tial and event-related poten­tial record­ings. Phys Med Reha­bil Clin N Am. 2004 Feb;15(1):1–17.

Ford M.R.; Sidman R.D.; Khalil M.A.; Lan K. Corti­cal poten­tial differ­ences in mild trau­matic brain injury for the AEP P300 compo­nent Elec­troen­cephalog­ra­phy and Clin­i­cal Neuro­phys­i­ol­ogy, 1997 102(1) , 21P-21P.

Ford, Martin R. Khalil, Mohamed. Evoked Poten­tial Find­ings in Mild Trau­matic Brain Injury 1: Middle Latency Compo­nent Augmen­ta­tion and Cogni­tive Compo­nent Atten­u­a­tion. Jour­nal of Head Trauma Reha­bil­i­ta­tion. 1996 11(3):1–15.

Ford, Martin R; Khalil, Mohamed Evoked Poten­tial Find­ings in Mild Trau­matic Brain Injury 2: Scor­ing System and Indi­vid­ual Discrim­i­na­tion. Jour­nal of Head Trauma Reha­bil­i­ta­tion. 1996 11(3):16–21.

Sidman RD, Ford MR, Ramsey G. Opti­mal elec­trode place­ments for adequate spatial sampling of audi­tory evoked poten­tials. Brain Topogr. 1994 Spring;6(3):227–30.

Ford MR, Sidman RD, Ramsey G. Spatio-temporal progres­sion of the AEP P300 compo­nent using the corti­cal imag­ing tech­nique. Brain Topogr. 1993 Fall;6(1):43–50.

Sidman R. D. ; Major D. J. ; Ford M. R. ; Ramsey G. G. ; Schlicht­ing C. Age-related features of the rest­ing pattern-Reversal visual evoked response using the dipole local­iza­tion method and corti­cal imag­ing tech­nique. J Neurosci Meth­ods. 1991, vol. 37, no1, pp. 27–36

Sidman RD, Ford MR, Ramsey G, Schlicht­ing C. Age-related features of the rest­ing and P300 audi­tory evoked responses using the dipole local­iza­tion method and corti­cal imag­ing tech­nique. J Neurosci Meth­ods. 1990 Jul;33(1):23–32.

Sidman RD, Kear­fott RB, Major DJ, Ford MR, Hill CD, Smith DB, Lee L, Kramer R. Devel­op­ment and appli­ca­tion of math­e­mat­i­cal tech­niques for the non-invasive local­iza­tion of the sources of scalp-recorded elec­tric poten­tials. In Biomed­ical Model­ling and Simu­la­tion, Eisen­feld J & Levine DS (Eds.) JC Baltzer AG, Scien­tific Publish­ing Co., 1989: 133–157.

Glueck BC, Ford MR, Molyn MA. Computer analy­sis of the elec­troen­cephalo­gram. Psychi­atric Annals 1988 18:236–245.

Ford MR, Goethe JW, Dekker DK. EEG coher­ence and power in the discrim­i­na­tion of psychi­atric disor­ders and medica­tion effects. Biol Psychi­a­try. 1986 Oct;21(12):1175–88.

Ford MR, Goethe JW, Dekker DK. EEG coher­ence and power changes during a contin­u­ous move­ment task. Int J Psychophys­iol. 1986 Jul;4(2):99–110.

Ford MR. Inter­per­sonal stress and style as predic­tors of short– and long-term outcome. Biofeed­back Self Regul. 1985 10:223–239.

Ford MR, Stroebel CF, Strong P, Szarek BL. Quiet­ing response train­ing: predic­tors of long-term outcome. Biofeed­back Self Regul. 1983 Sep;8(3):393–408.

Ford MR, Stroebel CF, Strong P, Szarek BL. Quiet­ing response train­ing: long-term eval­u­a­tion of a clin­i­cal biofeed­back prac­tice. Biofeed­back Self Regul. 1983 Jun;8(2):265–78.

Ford MR, Stroebel CF, Strong P, Szarek BL. Quiet­ing response train­ing: treat­ment of psychophys­i­o­log­i­cal disor­ders in psychi­atric inpa­tients. Biofeed­back Self Regul. 1982 Sep;7(3):331–9.

Ford MR. Biofeed­back treat­ment for headaches, Raynaud’s disease, essen­tial hyper­ten­sion and irri­ta­ble bowel syndrome: A review of the long-term, follow-up liter­a­ture. Biofeed­back Self Regul. 1982 Sep;7(4):521–536.

Mirabile CS, Ford MR. A clin­i­cally useful polling tech­nique for estab­lish­ing suscep­ti­bil­ity to motion sick­ness. Percep­tual and Motor Skills. 1982 54:987–991.

Stroebel CF, Ford MR. Biofeed­back – Quiet­ing response treat­ment of primary Raynaud’s disease. In Biofeed­back – Basic Prob­lems and Clin­i­cal Appli­ca­tions, Richter-Heinrich E & Miller NE (Eds), VEB Deutscher Verlag de Wissenschaften, Berlin, 1982.

Ford M, Bird BL, Newton FA, Sheer D. Main­te­nance and gener­al­iza­tion of 40-Hz EEG biofeed­back effects. Biofeed­back Self Regul. 1980 Jun;5(2):193–205.

Spydell JD, Ford MR, Sheer DE. Task depen­dent cere­bral later­al­iza­tion of the 40 Hertz EEG rhythm. Psychophys­i­ol­ogy. 1979 Jul;16(4):347–50.

Bird BL, Newton FA, Sheer DE, Ford M. Behav­ioral and elec­troen­cephalo­graphic corre­lates of 40-Hz EEG biofeed­back train­ing in humans. Biofeed­back Self Regul. 1978 Mar;3(1):13–28.

Bird BL, Newton FA, Sheer DE, Ford M. Biofeed­back train­ing of 40-Hz EEG in humans. Biofeed­back Self Regul. 1978 Mar;3(1):1–11.

Spydell JD, Ford MR, Sheer DE. Task depen­dent cere­bral later­al­iza­tion of the 40 Hertz EEG rhythm. Psychophys­i­ol­ogy. 1979 Jul;16(4):347–50.

 

Manfred Fuchs, Ph.D.

Plum­mer C, Wagner M, Fuchs M, Vogrin S, Litewka L, Farish S, Bailey C, Harvey AS, Cook MJ. Clin­i­cal util­ity of distrib­uted source model­ling of inter­ic­tal scalp EEG in focal epilepsy. Clin Neuro­phys. 2010, 121(10) , 1726–1739.

Plum­mer C, Wagner M, Fuchs M, Harvey AS, Cook MJ. Dipole Versus Distrib­uted EEG Source Local­iza­tion for Single Versus Aver­aged Spikes in Focal Epilepsy J Clin Neuro­phys­iol. 2010, 27(3):141–162.

Fuchs M, Wagner M, Kast­ner J. Devel­op­ment of volume conduc­tor and source models to local­ize epilep­tic foci. J Clin Neuro­phys­iol. 2007 Apr;24(2):101–19.

Wagner M, Fuchs M, Kast­ner J. Eval­u­a­tion of sLORETA in the pres­ence of noise and multi­ple sources. Brain Topogr. 2004;16(4):277–80.

Fuchs M, Wagner M, Kast­ner J. Confi­dence limits of dipole source recon­struc­tion results. Clin Neuro­phys­iol. 2004 Jun;115(6):1442–51.

Fuchs M, Ford MR, Sands S, Lew HL. Overview of dipole source local­iza­tion. Phys Med Reha­bil Clin N Am. 2004 Feb;15(1):251–62.

Fuchs M, Kast­ner J, Wagner M, Hawes S, Eber­sole JS. A stan­dard­ized bound­ary element method volume conduc­tor model. Clin Neuro­phys­iol. 2002 May;113(5):702–12.

Fuchs M, Wagner M, Kast­ner J. Bound­ary element method volume conduc­tor models for EEG source recon­struc­tion. Clin Neuro­phys­iol. 2001 Aug;112(8):1400–7.

Schmitt U, Louis AK, Darvas F, Buch­ner H, Fuchs M. Numer­i­cal aspects of spatio-temporal current density recon­struc­tion from EEG-/MEG-data. IEEE Trans Med Imag­ing. 2001 Apr;20(4):314–24.

Darvas F, Schmitt U, Louis AK, Fuchs M, Knoll G, Buch­ner H. Spatio-temporal current density recon­struc­tion (stCDR) from EEG/MEG-data. Brain Topogr. 2001 Spring;13(3):195–207.

Waber­ski TD, Gobbelé R, Herren­dorf G, Stein­hoff BJ, Kolle R, Fuchs M, Paulus W, Buch­ner H. Source recon­struc­tion of mesial-temporal epilep­ti­form activ­ity: compar­i­son of inverse tech­niques. Epilep­sia. 2000 Dec;41(12):1574–83

Buch­ner H, Gobbele R, Waber­ski TD, Wagner M, Fuchs M. Evidence for inde­pen­dent thal­a­mic and corti­cal sources involved in the gener­a­tion of the visual 40 Hz response in humans. Neurosci Lett. 1999 Jul 9;269(2):59–62.

Fuchs M, Wagner M, Köhler T, Wischmann HA. Linear and nonlin­ear current density recon­struc­tions. J Clin Neuro­phys­iol. 1999 May;16(3):267–95.

Ossen­blok P, Fuchs M, Velis DN, Velt­man E, Pijn JP, da Silva FH. Source analy­sis of lesional frontal-lobe epilepsy. IEEE Eng Med Biol Mag. 1999 May-Jun;18(3):67–77.

Fuchs M, Wagner M, Wischmann HA, Köhler T, Theis­sen A, Drenck­hahn R, Buch­ner H. Improv­ing source recon­struc­tions by combin­ing bioelec­tric and biomag­netic data. Elec­troen­cephalogr Clin Neuro­phys­iol. 1998 Aug;107(2):93–111.

Fuchs M, Drenck­hahn R, Wischmann HA, Wagner M. An improved bound­ary element method for real­is­tic volume-conductor model­ing. IEEE Trans Biomed Eng. 1998 Aug;45(8):980–97.

Waber­ski TD, Buch­ner H, Lehn­ertz K, Hufnagel A, Fuchs M, Beck­mann R, Rienäcker A. Prop­er­ties of advanced head­mod­el­ling and source recon­struc­tion for the local­iza­tion of epilep­ti­form activ­ity. Brain Topogr. 1998 Summer;10(4):283–90.

Buch­ner H, Gobbelé R, Wagner M, Fuchs M, Waber­ski TD, Beck­mann R. Fast visual evoked poten­tial input into human area V5. Neurore­port. 1997 Jul 28;8(11):2419–22.

Buch­ner H, Knoll G, Fuchs M, Rienäcker A, Beck­mann R, Wagner M, Silny J, Pesch J. Inverse local­iza­tion of elec­tric dipole current sources in finite element models of the human head. Elec­troen­cephalogr Clin Neuro­phys­iol. 1997 Apr;102(4):267–78.

Buch­ner H, Waber­ski TD, Fuchs M, Wischmann HA, Wagner M, Drenck­hahn R. Compar­i­son of real­is­ti­cally shaped boundary-element and spher­i­cal head models in source local­iza­tion of early somatosen­sory evoked poten­tials. Brain Topogr. 1995 Winter;8(2):137–43.

Buch­ner H, Waber­ski TD, Fuchs M, Wischmann HA, Beck­mann R, Rienäcker A. Origin of P16 median nerve SEP compo­nent iden­ti­fied by dipole source analysis–subthalamic or within the thalamo-cortical radi­a­tion? Exp Brain Res. 1995;104(3):511–8.

Buch­ner H, Fuchs M, Wischmann HA, Dössel O, Ludwig I, Knep­per A, Berg P. Source analy­sis of median nerve and finger stim­u­lated somatosen­sory evoked poten­tials: multi­chan­nel simul­ta­ne­ous record­ing of elec­tric and magnetic fields combined with 3D-MR tomog­ra­phy. Brain Topogr. 1994 Summer;6(4):299–310.

 

Jörn Kast­ner

Fuchs M, Wagner M, Kast­ner J. Devel­op­ment of volume conduc­tor and source models to local­ize epilep­tic foci. J Clin Neuro­phys­iol. 2007 Apr;24(2):101–19.

Wagner M, Fuchs M, Kast­ner J. Eval­u­a­tion of sLORETA in the pres­ence of noise and multi­ple sources. Brain Topogr. 2004;16(4):277–80.

Fuchs M, Wagner M, Kast­ner J. Confi­dence limits of dipole source recon­struc­tion results. Clin Neuro­phys­iol. 2004 Jun;115(6):1442–51.

Fuchs M, Kast­ner J, Wagner M, Hawes S, Eber­sole JS. A stan­dard­ized bound­ary element method volume conduc­tor model. Clin Neuro­phys­iol. 2002 May;113(5):702–12.

Fuchs M, Wagner M, Kast­ner J. Bound­ary element method volume conduc­tor models for EEG source recon­struc­tion. Clin Neuro­phys­iol. 2001 Aug;112(8):1400–7.

 

Curtis W. Ponton, Ph.D.

Näätä­nen R, Kujala T, Kreegipuu K, Carl­son S, Escera C, Baldeweg T, Ponton C. The mismatch nega­tiv­ity: an index of cogni­tive decline in neuropsy­chi­atric and neuro­log­i­cal diseases and in ageing. Brain. 2011.

Politte, D. Prior, F. Ponton, C. Nolan, T. Larson-Prior, L. Sources of non-physiologic noise in simul­ta­ne­ous EEG-fMRI data: A phan­tom study. Conf Proc IEEE Eng Med Biol Soc. 2010;1:5129–32.

Ponton CW, Bern­stein LE, Auer ET. Mismatch nega­tiv­ity with visual-only and audio­vi­sual speech. Brain Topogr. 2009; 21(3–4):207–215.

Bern­stein LE, Auer ET, Wagner M, Ponton CW. Spatiotem­po­ral dynam­ics of audio­vi­sual speech process­ing. NeuroIm­age, Neuroim­age. 2008; 39(1):423–35.

Shafer VL, Ponton CW, Datta H, Mora M, Schwartz RG. Neuro­phys­i­o­log­i­cal Indices of Atten­tion to Speech in Chil­dren with Specific Language Impair­ment. Clin Neuro­phys­iol. 118 (2007), 1230–1243.

Ponton CW, Egger­mont JJ. Elec­tro­phys­i­o­log­i­cal Measures of Human Audi­tory System Matu­ra­tion: Rela­tion­ship with Neuroanatomy and Behav­ior. In:

Burkard RF, Don M, Egger­mont JJ (eds.) Audi­tory Evoked Poten­tials: Basic Prin­ci­ples and Clin­i­cal Appli­ca­tion. Lippin­cott Williams & Wilkins, Philadel­phia 2007, 385–402.

Ponton CW. Crit­i­cal peri­ods for human corti­cal devel­op­ment: an ERP study in chil­dren with cochlear implants. In Lomber S and Egger­mont JJ (Eds) Repro­gram­ming the Cere­bral Cortex. Oxford Univer­sity Press, 2006. pp 213–228.

Don M, Ponton CW.. Func­tional imag­ing of audi­tory corti­cal activ­ity. In: RK Jack­ler, DB Brack­mann (Eds), Neuro­tol­ogy. Mosby, New York 2005.

Scarff CJ, Reynolds A, Goodyear BG, Ponton CW, Dort JC, Egger­mont JJ. Simul­ta­ne­ous 3-T fMRI and high-density record­ing of human audi­tory evoked poten­tials. Neuroim­age. 2004;23:1129–42.

Petti­grew CM, Murdoch BE, Ponton CW, Kei J, Chen­ery HJ, Alku P. Subti­tled videos and mismatch nega­tiv­ity (MMN) inves­ti­ga­tions of spoken word process­ing. J Am Acad Audiol. 2004;15:469–85.

Petti­grew CM, Murdoch BE, Ponton CW, Finni­gan S, Alku P, Kei J, Sock­alingam R, Chen­ery HJ. Auto­matic audi­tory process­ing of english words as indexed by the mismatch nega­tiv­ity, using a multi­ple deviant para­digm. Ear Hear. 2004;25:284–301.

Petti­grew CM, Murdoch BM, Kei J, Chen­ery HJ, Sock­alingam R, Ponton CW, Finni­gan S, Alku P. Process­ing of English words with fine acoustic contrasts and simple tones: a mismatch nega­tiv­ity study.J Am Acad Audiol. 2004;15:47–66.

Ponton CW, Don M. Cortically-Evoked Activ­ity Recorded from Cochlear Implant Users. Meth­ods And Appli­ca­tions In: H. Culling­ton (Ed.) Cochlear Implants Objec­tive Measures, Whurr Publish­ers Ltd, London 2003, 187–230.

Khosla D, Ponton CW, Egger­mont JJ, Kwong B, Don M, Vasama JP. Differ­en­tial ear effects of profound unilat­eral deaf­ness on the adult human central audi­tory system. J Assoc Res Otolaryn­gol. 2003 ;4:235–49.

Egger­mont JJ and Ponton CW (2003). Audi­tory evoked poten­tial stud­ies of corti­cal matu­ra­tion in normal hear­ing and implanted chil­dren: corre­la­tions with changes in struc­ture and speech percep­tion. Acta Otolaryn­gol 123: 249–252.

Uhlen I, Ponton CW, Egger­mont JJ, Kwong B, Don M. (2003). Matu­ra­tion of human central audi­tory system activ­ity: The T-complex. Clin Neuro­phys­iol 114: 685–701.

Bern­stein LE, Auer ET, Moore JK, Ponton CW, Don MD, Singh M. (2002). Visual speech percep­tion with­out primary audi­tory cortex acti­va­tion. NeuroRe­port 13: 311–315.

Egger­mont JJ and Ponton CW (2002). The neuro­phys­i­ol­ogy of audi­tory percep­tion: from single-units to evoked poten­tials. Audiol Neuro-Otol 7: 71–99.

Ponton CW, Egger­mont JJ, Kwong B, Don M. (2002). Matu­ra­tion of human central audi­tory system activ­ity: Sepa­rat­ing audi­tory evoked poten­tials by dipole source model­ing. Clin Neuro­phys­iol. 113: 407–420.

Ponton CW and Egger­mont JJ. Of Kittens and Kids: Altered corti­cal matu­ra­tion follow­ing profound deaf­ness and cochlear implant use. (2001) Audiol Neuro-Otol. 6: 363–380.

Ponton CW, Vasama JP, Trem­blay K, Khosla D, Kwong B, and Don M. (2001). Experience-related increases in inter-hemispheric corre­la­tions of evoked neuro­phys­i­o­log­i­cal activ­ity follow­ing profound unilat­eral deaf­ness. Hear Res. 154: 32–44.

Trem­blay K, Kraus N, McGee T, Ponton CW, Otis B (2001). Central audi­tory plas­tic­ity: changes in the N1-P2 complex after speech-sound train­ing. Ear Hear. 22: 79–90.

Ponton CW, Egger­mont JJ, Don M, Kwong B (2000). Matu­ra­tion of human central audi­tory system activ­ity: Evidence from multi-channel evoked poten­tials. Clin Neuro­phys­iol. 111: 220–236.

Ponton CW, Don M, Egger­mont JJ, Waring MD, Kwong B, Cunning­ham J, Trautwein (2000). Matu­ra­tion of the mismatch nega­tiv­ity: Effects of profound deaf­ness and cochlear implant use. Audiol Neuro-Otol. 5: 167–185.

Ponton CW, Moore JK, Egger­mont JJ (1999). Prolonged deaf­ness limits audi­tory system devel­op­men­tal plas­tic­ity: Evidence from an evoked poten­tials study in chil­dren with cochlear implants. Scand Audiol. 28(Suppl 51): 13–22.

Waring MD, Ponton CW, Don M (1999). Acti­vat­ing sepa­rate ascend­ing audi­tory path­ways produces differ­ent human thalamic/cortical responses. Hear Res. 130: 219–229.

Don M, Ponton CW, Egger­mont JJ, Kwong B (1998). The effects of sensorineural hear­ing loss on cochlear filter times esti­mated from audi­tory brain­stem response laten­cies. J Acoust Soc Am. 104: 2280–2289.

Ponton CW, Don M, Egger­mont JJ, Kwong B (1997). The inte­grated mismatch nega­tiv­ity (MMNi): A noise-free repre­sen­ta­tion of evoked responses allow­ing single-point distribution-free statis­ti­cal tests. Elec­troen­cephalogr Clin Neuro­phys­iol. 104: 143–150.

Egger­mont JJ, Ponton CW, Don M, Waring MD, Kwong (1997). Matu­ra­tional delays in corti­cal evoked poten­tials in cochlear implant users. Acta Otolaryn­gol. 117: 161–63.

Ponton CW, Don M, Egger­mont JJ, Waring MD, Kwong B, Masuda A (1996). Audi­tory system plas­tic­ity in chil­dren after long peri­ods of complete deaf­ness. NeuroRe­port 8: 61–65.

Ponton CW. (1996). Possi­ble appli­ca­tion of func­tional imag­ing of the human audi­tory system in the study of acclima­ti­za­tion and late onset depri­va­tion. Ear Hear. 17: 78–86.

Ponton CW, Don M, Egger­mont JJ, Waring MD, Masuda A. (1996). Matu­ra­tion of human corti­cal audi­tory func­tion: Differ­ences between normal hear­ing and cochlear implant chil­dren. Ear Hear. 17: 430–437.

Ponton CW, Moore JK, Egger­mont JJ (1996). ABR gener­a­tion by paral­lel path­ways: Differ­en­tial matu­ra­tion of axonal conduc­tion time and synap­tic trans­mis­sion. Ear Hear. 17: 402–410.

Moore JK, Ponton CW, Egger­mont JJ, Wu J-C, Huang, JQ (1996). Peri­na­tal matu­ra­tion of the ABR: Changes in path length and conduc­tion veloc­ity. Ear Hear. 17: 411–418.

Don M, Vermiglio AJ, Ponton CW, Egger­mont JJ, Masuda A (1996). Vari­able effects of click polar­ity on audi­tory brain-stem response laten­cies: Analy­ses of narrow-band ABRs suggest possi­ble expla­na­tions. J Acoust Soc Am. 100: 458–466.

Egger­mont JJ, Brown DK, Ponton CW, Kimber­ley BP (1996). Compar­i­son of DPE and ABR trav­el­ing wave delay measure­ments suggests frequency-specific synapse matu­ra­tion. Ear Hear. 17: 386–394.

Ponton CW, Don M (1995). The mismatch nega­tiv­ity in cochlear implant users. Ear Hear. 16: 131–146.

Don M, Ponton CW. Func­tional imag­ing of audi­tory corti­cal activ­ity. In: RK Jack­ler, DB Brack­mann (Eds), Neuro­tol­ogy. Mosby, New York, 1994; pp 283–301.

Don M, Ponton CW, Egger­mont JJ, Masuda A (1994). Audi­tory brain­stem response (ABR) peak ampli­tudes vari­abil­ity reflects indi­vid­ual differ­ences in cochlear response times. J Acoust Soc. 96: 3476–3491.

Ponton CW, Egger­mont JJ, Coup­land SG, Winke­laar R (1993). The rela­tion between head size and ABR interpeak latency matu­ra­tion. J Acoust Soc. 94: 2135–2148.

Ponton CW, Don M, Waring MD, Egger­mont JJ, Masuda A (1993). Spatio-temporal source model­ing of evoked responses to acoustic and cochlear implant stim­u­la­tion of the audi­tory system. Elec­troen­cepha­log Clin Neuro­phys­iol. 88: 478–493.

Don M, Ponton CW, Egger­mont JJ, Masuda A (1993). Gender differ­ences in cochlear response time: An expla­na­tion for gender ampli­tude differ­ences in the unmasked ABR. J Acoust Soc. 94: 2135–2148.

Ponton CW, Egger­mont JJ, Coup­land SG, Winke­laar R (1992). Frequency specific matu­ra­tion of the eighth nerve and brain­stem audi­tory path­way: Evidence from derived audi­tory brain-stem response (ABRs). J Acoust Soc. 91: 1576–1586.

Ponton CW, Don M, Egger­mont JJ (1992). Place-specific derived cochlear micro­phon­ics from normal human ears. Scand Audiol. 21: 131–141.

Egger­mont JJ, Ponton CW, Coup­land SG, Winke­laar D (1991). Matu­ra­tion of the traveling-wave delay in the human cochlea. J Acoust Soc Am. 90: 288–298.

Egger­mont JJ, Ponton CW, Coup­land SG, Winke­laar D (1991). Frequency depen­dent matu­ra­tion of the cochlea and brain­stem evoked poten­tials. Acta Otolaryn­gol. 111: 220–224.

Coup­land SG, Ponton CW, Egger­mont JJ, Bowen TJ, Grant RM (1991). Assess­ment of cisplatinum-induced ototox­i­c­ity using derived-band ABRs. Inter­na­tional J Ped Otorhi­no­laryn­gol. 22: 237–248.

Ponton CW (1987). Enhanced artic­u­la­tory speed in ambidex­ters. Neuropsy­cholo­gia 25: 305–311.

Proc­tor MA, Ponton CW, Jamieson DG. (1986). Programs to produce high qual­ity dichotic tapes for central audi­tory test­ing. Comp Biomed Res. 19:508–519.

 

Rob Simon

Slobounov S, Sebas­tianelli W, Simon R. . Neuro­phys­i­o­log­i­cal and behav­ioral concomi­tants of mild brain injury in colle­giate athletes. Clin Neuro­phys­iol. 2002 113(2): 185–93.

Ray WJ, Slobounov S, Mord­koff JT, John­ston J, Simon RF. . Rate of force devel­op­ment and the later­al­ized readi­ness poten­tial. Psychophys­i­ol­ogy. 2000 37(6): 757–65.

Slobounov SM, Rearick MP, Simon RF, John­ston JA. . Movement-related poten­tials are task or end-effector depen­dent: evidence from a multi­fin­ger exper­i­ment. Exp Brain Res. 2000 135(1): 106–16.

Slobounov S, Simon R, Tutwiler R, Rearick M. . EEG corre­lates of wrist kine­mat­ics as revealed by aver­ag­ing tech­niques and Morlet wavelet trans­forms. Motor Control. 2000 4(3): 350–72.

Slobounov SM, Fukada K, Simon R, Rearick M, Ray W. . Neuro­phys­i­o­log­i­cal and behav­ioral indices of time pres­sure effects on visuo­mo­tor task perfor­mance. Brain Res Cogn Brain Res. 2000 9(3): 287–98.

Slobounov SM, Ray WJ, Simon RF. . Movement-related poten­tials accom­pa­ny­ing unilat­eral finger move­ments with special refer­ence to rate of force devel­op­ment. 1998 Psychophys­i­ol­ogy. 35(5): 537–48.

 

Michael Wagner, Ph.D.

View Michael Wagner profile on Research Gate.

Plum­mer C, Wagner M, Fuchs M, Vogrin S, Litewka L, Farish S, Bailey C, Harvey AS, Cook MJ. Clin­i­cal util­ity of distrib­uted source model­ling of inter­ic­tal scalp EEG in focal epilepsy. Clin Neuro­phys. 2010, 121(10) , 1726–1739.

Plum­mer C, Wagner M, Fuchs M, Harvey AS, Cook MJ. Dipole Versus Distrib­uted EEG Source Local­iza­tion for Single Versus Aver­aged Spikes in Focal Epilepsy J Clin Neuro­phys­iol. 2010, 27(3):141–162.

Bern­stein LE, Auer ET Jr, Wagner M, Ponton CW. Spatiotem­po­ral dynam­ics of audio­vi­sual speech process­ing. Neuroim­age. 2008 Jan 1;39(1):423–35.

Fuchs M, Wagner M, Kast­ner J. Devel­op­ment of volume conduc­tor and source models to local­ize epilep­tic foci. J Clin Neuro­phys­iol. 2007 Apr;24(2):101–19.

Kris­teva R, Chakarov V, Wagner M, Schulte-Mönting J, Hepp-Reymond MC. Is the movement-evoked poten­tial manda­tory for move­ment execu­tion? A high-resolution EEGstudy in a deaf­fer­ented patient. Neuroim­age. 2006 Jun;31(2):677–85.

Wagner M, Fuchs M, Kast­ner J. Eval­u­a­tion of sLORETA in the pres­ence of noise and multi­ple sources. Brain Topogr. 2004;16(4):277–80.

Fuchs M, Wagner M, Kast­ner J. Confi­dence limits of dipole source recon­struc­tion results. Clin Neuro­phys­iol. 2004 Jun;115(6):1442–51.

Fuchs M, Kast­ner J, Wagner M, Hawes S, Eber­sole JS. A stan­dard­ized bound­ary element method volume conduc­tor model. Clin Neuro­phys­iol. 2002 May;113(5):702–12.

Fuchs M, Wagner M, Kast­ner J. Bound­ary element method volume conduc­tor models for EEG source recon­struc­tion. Clin Neuro­phys­iol. 2001 Aug;112(8):1400–7.

Huppertz HJ, Hof E, Klisch J, Wagner M, Lück­ing CH, Kristeva-Feige R. Local­iza­tion of inter­ic­tal delta and epilep­ti­form EEG activ­ity asso­ci­ated with focal epilep­to­genic brain lesions. Neuroim­age. 2001 Jan;13(1):15–28.

Ball T, Schreiber A, Feige B, Wagner M, Lück­ing CH, Kristeva-Feige R The role of higher-order motor areas in volun­tary move­ment as revealed by high-resolution EEG and fMRI.. Neuroim­age. 1999 Dec;10(6):682–94.

Waber­ski TD, Buch­ner H, Perkuhn M, Gobbelé R, Wagner M, Kücker W, Silny J. N30 and the effect of explo­rative finger move­ments: a model of the contri­bu­tion of the motor cortex to early somatosen­sory poten­tials. Clin Neuro­phys­iol. 1999 Sep;110(9): 1589–600.

Buch­ner H, Gobbele R, Waber­ski TD, Wagner M, Fuchs M.Evidence for inde­pen­dent thal­a­mic and corti­cal sources involved in the gener­a­tion of the visual 40 Hz response in humans. Neurosci Lett. 1999 Jul 9;269(2):59–62.

Fuchs M, Wagner M, Köhler T, Wischmann HA. Linear and nonlin­ear current density recon­struc­tions. J Clin Neuro­phys­iol. 1999 May;16(3):267–95.

Fuchs M, Wagner M, Wischmann HA, Köhler T, Theis­sen A, Drenck­hahn R, Buch­ner H. Improv­ing source recon­struc­tions by combin­ing bioelec­tric and biomag­netic data. Elec­troen­cephalogr Clin Neuro­phys­iol. 1998 Aug;107(2):93–111.

Fuchs M, Drenck­hahn R, Wischmann HA, Wagner M. An improved bound­ary element method for real­is­tic volume-conductor model­ing. IEEE Trans Biomed Eng. 1998 Aug;45(8):980–97.

Buch­ner H, Gobbelé R, Wagner M, Fuchs M, Waber­ski TD, Beck­mann R. Fast visual evoked poten­tial input into human area V5. Neurore­port. 1997 Jul 28;8(11):2419–22.

Buch­ner H, Knoll G, Fuchs M, Rienäcker A, Beck­mann R, Wagner M, Silny J, Pesch J. Inverse local­iza­tion of elec­tric dipole current sources in finite element models of the human head. Elec­troen­cephalogr Clin Neuro­phys­iol. 1997 Apr;102(4):267–78.

Buch­ner H, Waber­ski TD, Fuchs M, Wischmann HA, Wagner M, Drenck­hahn R. Compar­i­son of real­is­ti­cally shaped boundary-element and spher­i­cal head models in source local­iza­tion of early somatosen­sory evoked poten­tials. Brain Topogr. 1995 Winter;8(2):137–43.

The post Publications by Neuroscan Staff appeared first on Compumedics Neuroscan.

Scientific Publications with Neuroscan Systems

$
0
0

In past years, we have attempted to main­tain a list of publi­ca­tions in which Neuroscan equip­ment was used. The sheer number of publi­ca­tions has greatly surpassed our abil­ity to keep the list current. As a conve­nient alter­na­tive, we are provid­ing the follow­ing links to arti­cles in which Neuroscan is mentioned. The searches were accom­plished using Google Scholar, going back to 2006, using the indi­cated search words. The numbers in paren­the­ses are the total “matches” that were returned at the time the search was created.

 

Applied Neuro­science (10,000 + citations)

Neuroscan and SynAmps (1,700 + cita­tions)

Neuroscan and Data Acqui­si­tion (1,000 + cita­tions)

Neuroscan and Atten­tion (3,400 + cita­tions)

Neuroscan and Cogni­tive (3,800 + cita­tions)

Neuroscan and Learn­ing (2,400 + cita­tions)

Neuroscan and Memory (2,900 + cita­tions)

Neuroscan and Emotion (1,600 + cita­tions)

Neuroscan and “Mismatch Nega­tiv­ity” (1,200 + cita­tions)

Neuroscan and P300 (1,800 + cita­tions)

Neuroscan and N400 (600 + cita­tions)

Neuroscan and P600 (200 + cita­tions)

Neuroscan and “Visual System” (300 + cita­tions)

Neuroscan and “Audi­tory System” (450 + cita­tions)

Neuroscan and BCI (Brain Computer Inter­face) (400 + citations)

 

MRI/EEG Record­ings (1,900 + citations)

Neuroscan and Curry (300 + cita­tions)

Neuroscan and “source recon­struc­tion” (190 + cita­tions)

Neuroscan and MRI (1,400 + citations)

Sensory Neuro­science (900 + citations)

Neuroscan and Audi­tory Brain­stem Response (100 + cita­tions)

Neuroscan and Audi­tory Evoked Poten­tial (350 + cita­tions)

Neuroscan and Visual Evoked Poten­tial (350 + cita­tions)

Neuroscan and Somatosen­sory Evoked Response (75 + citations)

 

Clin­i­cal Neuro­science (3000 + citations)

Neuroscan and Pain (550 + cita­tions)

Neuroscan and Sleep (800 + cita­tions) ‘

Neuroscan and Phar­ma­col­ogy (300 + cita­tions)

Neuroscan and Epilepsy (650 + cita­tions)

Neuroscan and Schiz­o­phre­nia (1600 + cita­tions)

Neuroscan and Deep Brain Stim­u­la­tion (70 + cita­tions)

Neuroscan and ADHD (450 + citations)

 

You may of course refine your own search as desired using the Advanced options, going back more years, or using other search engines.

The post Scientific Publications with Neuroscan Systems appeared first on Compumedics Neuroscan.

Research – Now and Into the Future

$
0
0

Neuroscan is a company founded by neuro­sci­en­tists with a primary mission to support the needs of inves­ti­ga­tors, in both the research and clin­i­cal domains. For over 20 years, research and devel­op­ment has remained the primary focus of Neuroscan. From creat­ing the world’s first complete hard­ware and soft­ware pack­age for acquir­ing and process­ing EEG and ERP data to devel­op­ing the indus­try stan­dard in qual­ity ampli­fiers, Neuroscan has strived to provide advanced solu­tions for research on the lead­ing edge of science.

 

Compre­hen­sive Solutions

Neuroscan recog­nizes the impor­tance of provid­ing compre­hen­sive solu­tions for research. Each compo­nent in the Neuroscan family of prod­ucts inte­grates seam­lessly with the others, allow­ing the selec­tion of only those tools that meet your current needs, secure in the knowl­edge that a clear upgrade path exists when your require­ments neces­si­tate expan­sion. From the most basic EEG record­ings to sensory, percep­tual and cogni­tive ERPs, from source local­iza­tion to inte­gra­tion with MRI data or even simul­ta­ne­ous record­ing with fMRI, the evolu­tion of the Neuroscan prod­uct line continues.

Devel­op­ing solu­tions that support a wide vari­ety of appli­ca­tions is no small task. Start­ing with the most basic process­ing tools that are common to all EEG appli­ca­tions, Neuroscan has not only incor­po­rated these algo­rithms but has sought to opti­mize and improve these processes. For instance, eye arti­fact reduc­tion is a neces­sary part of all EEG data process­ing, and Neuroscan provides multi­ple meth­ods for detec­tion and reduc­tion, with imme­di­ate appli­ca­tion so you can see which meth­ods work best (using CURRY 7).

Beyond basic data process­ing, Neuroscan has incor­po­rated an exten­sive array of analy­sis tools and is constantly assess­ing and incor­po­rat­ing the latest process­ing algo­rithms to provide the neuro­science commu­nity with the most advanced tools for their research. Exam­ples include real time source analy­sis with gener­al­ized bound­ary and finite element head models, real time inde­pen­dent compo­nents analy­sis and filter­ing, multi­ple single and distrib­uted source models, and non-parametric topo­graph­i­cal ANOVAs.

 

Func­tional Neuroimaging

One major focus of our ongo­ing R&D efforts is in the area of func­tional neuroimag­ing. Over the years, three sepa­rate research groups have merged differ­ent areas of exper­tise to produce true func­tional neuroimag­ing integration.

Histor­i­cally, R&D in the El Paso office of Neuroscan was respon­si­ble for the ampli­fiers and acqui­si­tion and analy­sis soft­ware for EEG and ERP systems — SCAN. Real time inte­gra­tion of EEG and fMRI acqui­si­tion became the focus of the Neuroscan team about 10 years ago. To facil­i­tate this devel­op­ment, active inter­na­tional collab­o­ra­tions have been estab­lished with some of the most advanced fMRI facil­i­ties in the world. Ulti­mately, the combined tempo­ral reso­lu­tion of EEG and ERPs and spatial accu­racy of fMRI will provide neuro­sci­en­tists with an unprece­dented capac­ity to explore sensory, percep­tual and cogni­tive processes in normal and patho­log­i­cal populations.

Oper­at­ing in paral­lel since 2000, when Neuroscan acquired CURRY from Philips, the source recon­struc­tion group in Hamburg, Germany has devel­oped advanced algo­rithms for segmen­ta­tion and source recon­struc­tion that have led to the most sophis­ti­cated neuroimag­ing soft­ware pack­age in the world — CURRY.

CURRY is used world­wide in a vari­ety of research facil­i­ties, and in an increas­ing number of clin­i­cal oper­a­tions, deal­ing primar­ily with epilepsy, where CURRY’s abil­ity to inte­grate EEG and MEG with the CT, MRI, and other forms of image data provide an insight into the origin of the epilep­tic activity.

Neuroscan merged with Compumedics in 2003, and there was then a third R&D divi­sion, devoted primar­ily to the devel­op­ment of EEG ampli­fiers and soft­ware systems related to sleep disorders.

 

Now and Into the Future

In recent years, there has been an inevitable and delib­er­ate inte­gra­tion of the three over­lap­ping R&D divi­sions, culmi­nat­ing in the CURRY Neuroimag­ing Suite, or CURRY 7. This suite of modu­lar programs combines the years of soft­ware devel­op­ment for EEG acqui­si­tion and analy­sis from SCAN and the Compumedics acqui­si­tion soft­ware, with the image data analy­sis and source recon­struc­tion from CURRY. CURRY 7 has been designed to acquire data not only with the Neuroscan ampli­fiers, but also with the Compumedics ampli­fiers. Data files from SCAN and from the Compumedics soft­ware are all read directly by CURRY 7.

CURRY 7 provides a solid foun­da­tion for years of future devel­op­ment in the research world, while also becom­ing more ensconced in clin­i­cal facil­i­ties. Because of its modu­lar devel­op­ment, users need only obtain the compo­nents required for their current needs. The blend of R&D resources within Compumedics/Neuroscan ensures that the future will see even more func­tion­al­ity, as we contin­u­ally strive to provide the best and most current capa­bil­i­ties for our users.

For addi­tional details please contact sales@neuroscan.com or sales@compumedicsneuroscan.com

The post Research – Now and Into the Future appeared first on Compumedics Neuroscan.

About Neuroscan

$
0
0

Compumedics Neuroscan is dedi­cated to expand­ing knowl­edge and under­stand­ing of the human brain and nervous system through advanced technology.

Compumedics Neuroscan is a world-leading devel­oper of research soft­ware for neuro­phys­i­ol­ogy, neuroimag­ing, and neuro­di­ag­nos­tic systems. Neuroscan provides tools to increase under­stand­ing and improve treat­ment of this most complex and least under­stood system of the human body; the brain.

Neuroscan, founded in 1985, is the world’s lead­ing provider of tech­nolo­gies for high-density EEG record­ings, electro-magnetic source local­iza­tion, multi-modal neuroimag­ing and enhance­ments to func­tional MRI. Neuroscan’s prod­ucts are in use at over 1500 univer­si­ties, corpo­rate labo­ra­to­ries and national research insti­tutes in approx­i­mately 40 countries.

Using the exper­tise acquired during the evolu­tion of its high-level research prod­ucts, Compumedics and Neuroscan have also devel­oped clin­i­cal systems for EEG and EMG appli­ca­tions. Simple to use, yet employ­ing Neuroscan’s sophis­ti­cated record­ing and signal process­ing tech­niques, the Neuroscan line of clin­i­cal prod­ucts offer a high degree of value and performance.

In support of its customers, prod­ucts and appli­ca­tions, Neuroscan also oper­ates Neuromed­ical Supplies, a lead­ing manu­fac­turer and distrib­u­tor of a wide range of acces­sory and dispos­able items used in both research and clin­i­cal neurol­ogy settings. Addi­tion­ally, as a result of the merger with Compumedics Limited, a global supplier of clin­i­cal systems for polysomnog­ra­phy, neurol­ogy and cardi­ol­ogy, Neuromed­ical Supplies is now proud to also offer a complete range of high qual­ity sensors and supplies for modern sleep laboratories.

The combined prod­uct range from Neuroscan and Compumedics is one of the largest in the indus­try. From compact 24-hour ambu­la­tory EEG recorders for the hospi­tal clin­i­cian to highly complex multi­modal neuroimag­ing for large univer­sity research centers, this is the source.

Neuroscan and Compumedics — Part­ners in Neuro­science — Part­ners in Neurodiagnostics

The post About Neuroscan appeared first on Compumedics Neuroscan.

Satellite Symposium at BIOMAG 2016

$
0
0

BIOMAG 2016Compumedics Neuroscan is pleased to announce a satellite symposium at the BIOMAG 2016 meeting in Seoul, Korea. The symposium “Comparison and combination MEG and EEG data” will be held October 2, 2016. More information is available on the website of BIOMAG.

Speakers:

  1. Manfred Fuchs, PhD, Compumedics Neuroscan, Hamburg Germany, Source Reconstruction from combined MEG and EEG Data
  2. Stefan Ramp, MD, Erlangen University, Simultaneous and combined EEG in epileptic focus localization: A clinical perspective
  3. Robert Knowlton, MD, University of California, San Francisco, Ictal EEG source localization on the Seizure Monitoring Unit using 31 recording channels.
  4. Michael Wagner, PhD, John Ebersole, MD, Compumedics Neuroscan, Hamburg Germany, Benefits of combined MEG/EEG in presurgical evaluation of epilepsy: a study of 250 patients

In addition to this event, Compumedics is exhibiting at the BIOMAG meeting.

 

The post Satellite Symposium at BIOMAG 2016 appeared first on Compumedics Neuroscan.


SCAN Frequently Asked Questions (FAQ)

CURRY 8 PDF Documentation

CURRY 8 Released

$
0
0

curry8Compumedics Neuroscan is pleased to announce CURRY 8, our premier tool for EEG/MEG signal processing and neuroimaging, has been released. It is now available for purchase. Please talk to your local representative in case you are interested in CURRY 8 or when you wish to upgrade you existing CURRY license.

The post CURRY 8 Released appeared first on Compumedics Neuroscan.

CURRY 8 – Why you should upgrade

Update: Electrode Digitizers

$
0
0

The website has been updated with new information about electrode digitization. Compumedics Neuroscan supports a large variety of electrode digitization hardware. These include the NDI Krios, Spectra and Vicra devices as well as the Polhemus Fastrak and Patriot devices. The procedure of the electrode digitization is completely integrated in the CURRY Package and allows fast digitization of the electrode position with high accuracy.

Read more

The post Update: Electrode Digitizers appeared first on Compumedics Neuroscan.

Update: Orion LifeSpan MEG

Compumedics wins major multi-million dollar MEG brain imaging contract


Low-noise MEG by continuously operating reliquefier

$
0
0

Continuous helium-recycling minimizes the operating costs and maintenance requirements for magnetoencephalography. The Orion LifeSpan™ MEG System uses efficient helium-recycling with zero-loss.

A recent publication by Lee et al. describes the helium-recycling system, the MEG system and the corresponding results.

Low-noise magnetoencephalography system cooled by a continuously operating reliquefier, Y H Lee, H Kwon, K K Yu, J M Kim, S K Lee, M-Y Kim and K Kim, Korea Research Institute of Standards and Science, 1 Doryong, Yuseong, Daejeon, 305-600, Republic of Korea, Supercond. Sci. Technol. 30 (2017) 084003 (8pp)

The post Low-noise MEG by continuously operating reliquefier appeared first on Compumedics Neuroscan.

Curry 7 PDF Documentation

Orion LifeSpan MEG System overview

New website Orion LifeSpan MEG

Successful MEG installation at Barrow Neurological Institute

$
0
0

Compumedics Neuroscan is pleased to announce the successful installation and first phase commissioning of the Orion LifeSpan™ magnetoencephalography (MEG) at Barrow Neurological Institute (BNI) in Phoenix, Arizona, USA. Compumedics is also in the process of submitting its application for FDA 510(k) clearance, which will allow for clinical use of the MEG device, primarily for epilepsy and pre-surgical brain function mapping. This milestone marks the beginning of an exciting clinical and neuroscience research program planned at the prestigious neuroscience institute.

This successful installation marks a milestone for the MEG, with the Orion LifeSpan™ MEG being the first completely new design of a commercial MEG instrument to be delivered and installed in almost twenty years.

BNI, the world’s largest neurological disease treatment and research institution, is consistently ranked as one of the best neurosurgical training centers in the world. The Institute was founded in 1962 and has since grown to be one of the premier facilities in the world for neurology and neurosurgery, with more operative neurosurgical procedures undertaken at BNI than at any other USA institution.

Orion LifeSpan™ MEG technology has evolved from more than thirty years experience with magnetoencephalography (MEG) and electroencephalogram (EEG) technologies. Included are innovations in acquisition/analysis/visualisation software, highly sensitive magnetic field detectors and low-noise amplifier electronics, which have been developed at both the Korea Research Institute of Standards and Science (KRISS) and within Compumedics Neuroscan itself.

Ground-breaking features of the Orion LifeSpan™ MEG include advanced Superconducting Quantum Interference Device (SQUID) detectors for unparalleled sensitivity to brain signals; reduced operating cost from zero-loss helium reliquification with 24/7 operation; a fully integrated low-noise, high-density EEG monitoring system utilising the latest Compumedics/Neuroscan technology.

These hardware advancements are fully integrated with the state-of-the-art FDA-approved coregistration, neuroimage processing, and source estimation software known as CURRY – the world’s gold standard for clinical MEG/EEG and neuroscience research. Orion LifeSpan™ MEG also allows for a unique dual-helmet sensing system, with one side optimised for adult MEG recordings and the other for paediatrics. The exclusive pediatric capability will shortly be implemented at BNI, during the second and final installation phase.

Viewing all 55 articles
Browse latest View live